Search results for "Hippo signaling"

showing 10 items of 12 documents

Repurposing of Drugs Targeting YAP-TEAD Functions

2018

Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be rele…

0301 basic medicineCell signalingCell signalingCancer ResearchProtein-protein interactionsHippo pathwayDrug repurposingprotein-protein interactionsComputational biologyReviewBiologylcsh:RC254-28203 medical and health sciencesYAP-TEAD disruptioncell signalingRepurposingTissue homeostasisHippo signaling pathwaydrug repurposingEffectorCell growthDrug discoveryYap-tead disruptionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensDrug repositioning030104 developmental biologyOncologyCell signaling; Drug repurposing; Hippo pathway; Protein-protein interactions; Yap-tead disruption; Oncology; Cancer ResearchCancers
researchProduct

Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology.

2021

The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.

0301 basic medicineOncologymedicine.medical_specialtyCardiologyProtein Serine-Threonine KinasesCardiac regeneration03 medical and health sciences0302 clinical medicineInternal medicinemedicineAnimalsHumansHippo Signaling PathwayCardio oncologyCell survivalCell ProliferationHippo signaling pathwaybiologybusiness.industryHematologybiology.organism_classificationKinase cascade030104 developmental biologyDrosophila melanogasterOncologyCardiology fieldAnimals Cardiac development Cardiac regeneration Cardio-oncology Cardiology Cell Proliferation Drosophila melanogaster HIPPO signaling pathway Humans Protein Serine-Threonine Kinases030220 oncology & carcinogenesisCardiologyDrosophila melanogasterbusinessSignal TransductionCritical reviews in oncology/hematology
researchProduct

Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer

2016

Background & Aims Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. Methods We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan–Meier curves. We analyze…

0301 basic medicineTime FactorsMuscle ProteinsKaplan-Meier Estimatemedicine.disease_causeChromosome instabilityYAP1Liver NeoplasmsGastroenterologyTEA Domain Transcription FactorsHep G2 CellsPrognosisDNA-Binding ProteinsGene Expression Regulation NeoplasticPhenotypeHippo signalingRNA InterferenceSignal TransductionCarcinoma HepatocellularPorphyrinsAntineoplastic AgentsMice TransgenicBiologyTransfection03 medical and health sciencesChromosomal InstabilitymedicineAnimalsHumansGene silencingGenetic Predisposition to DiseaseAdaptor Proteins Signal TransducingHippo signaling pathwayHepatologyGene Expression ProfilingForkhead Box Protein M1VerteporfinYAP-Signaling ProteinsHCCSPhosphoproteinsThiostreptonMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyTissue Array AnalysisFOXM1Cancer researchTranscriptomeCarcinogenesisTranscription FactorsGastroenterology
researchProduct

The Hippo Show Must Go On: YAP Activation as a Therapeutic Strategy in Colorectal Cancer

2020

The role of Hippo pathway in colorectal cancer (CRC) initiation and progression has been controversial. In this issue of Cell Stem Cell, Cheung et al. (2020) shed new light on a distinct function of the transcriptional co-activator YAP as a tumor suppressor and Wnt pathway inhibitor in CRC.

0303 health sciencesHippo signaling pathwayColorectal cancerCellWnt signaling pathwayCell BiologyBiologymedicine.diseasedigestive system diseaseslaw.invention03 medical and health sciences0302 clinical medicinemedicine.anatomical_structurelawGeneticsmedicineCancer researchMolecular MedicineSuppressorYAP colorectal cancer Hippo pathway Wnt pathwayStem cellTranscription factor030217 neurology & neurosurgeryFunction (biology)030304 developmental biologyCell Stem Cell
researchProduct

The EP300/TP53 pathway, a suppressor of the Hippo and canonical WNT pathways, is activated in human hearts with arrhythmogenic cardiomyopathy in the …

2021

Aim Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. Methods and results Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and 5 control samples were analyzed by RNA-S…

0301 basic medicinePhysiologyCardiomyopathy030204 cardiovascular system & hematologyBiologyMechanotransduction CellularBiological pathway03 medical and health sciences0302 clinical medicinePhysiology (medical)medicineHumansMechanotransductionEP300Wnt Signaling PathwayArrhythmogenic Right Ventricular DysplasiaHeart FailureHippo signaling pathwayWnt signaling pathwayArrhythmias CardiacOriginal Articlesmedicine.diseaseCell biologyDeath Sudden Cardiac030104 developmental biologyCardiomyopathy Gene expression Hippo pathway RNA-Sequencing TP53 WNT pathwayHeart failureTumor Suppressor Protein p53Signal transductionCardiomyopathiesCardiology and Cardiovascular MedicineE1A-Associated p300 ProteinCardiovascular Research
researchProduct

TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells

2015

Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs…

cancer stem cellsTAZAnimals; Biomarkers Tumor; Breast Neoplasms; Cell Line Tumor; Disease-Free Survival; Female; Gene Expression Regulation Neoplastic; Humans; Mice; Neoplasm Metastasis; Neoplasm Recurrence Local; Neoplastic Stem Cells; Transcription Factors; Xenograft Model Antitumor AssaysCancer ResearchBioinformaticschemotherapyMetastasistaz; breast cancerMiceNeoplasm Metastasiseducation.field_of_studyTumorIntracellular Signaling Peptides and ProteinsCell cycleGene Expression Regulation NeoplasticLocalNeoplastic Stem Cellsbreast cancer; cancer stem cells; chemotherapy; metastasis; TAZ; Animals; Biomarkers Tumor; Breast Neoplasms; Cell Line Tumor; Disease-Free Survival; Female; Gene Expression Regulation Neoplastic; Humans; Intracellular Signaling Peptides and Proteins; Mice; Neoplasm Metastasis; Neoplasm Recurrence Local; Neoplastic Stem Cells; Xenograft Model Antitumor Assays; Molecular Biology; Genetics; Cancer ResearchFemaleStem cellPopulationBreast NeoplasmsBiologyDisease-Free SurvivalCell Linebreast cancer cancer stem cells TAZBreast cancerbreast cancerCancer stem cellSettore MED/04 - PATOLOGIA GENERALECell Line TumormedicineBiomarkers TumorGeneticsmetastasisAnimalsHumanseducationMolecular BiologyHippo signaling pathwayNeoplasticCancermedicine.diseaseXenograft Model Antitumor AssaysNeoplasm RecurrenceGene Expression RegulationTranscriptional Coactivator with PDZ-Binding Motif ProteinsCancer researchTrans-ActivatorsNeoplasm Recurrence LocalBiomarkersTranscription Factors
researchProduct

Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins

2012

Loss of muscle mass and function occurs in various diseases. Myostatin blocking can attenuate muscle loss, but downstream signaling is not well known. Therefore, to elucidate associated signaling pathways, we used the soluble activin receptor IIb (sActRIIB-Fc) to block myostatin and activins in mice. Within 2 wk, the treatment rapidly increased muscle size as expected but decreased capillary density per area. sActRIIB-Fc increased muscle protein synthesis 1–2 days after the treatment correlating with enhanced mTORC1 signaling (phosphorylated rpS6 and S6K1, r = 0.8). Concurrently, increased REDD1 and eIF2Bε protein contents and phosphorylation of 4E-BP1 and AMPK was observed. In contrast, pr…

Malemedicine.medical_specialtyPhysiologyEndocrinology Diabetes and MetabolismMuscle ProteinsCell CountP70-S6 Kinase 1MyostatinMechanistic Target of Rapamycin Complex 1Protein Serine-Threonine KinasesBiologyMice03 medical and health sciences0302 clinical medicinePhysiology (medical)Internal medicinemedicineAnimalsHippo Signaling PathwayExtracellular Signal-Regulated MAP KinasesMuscle Skeletalta315030304 developmental biology0303 health sciencesHippo signaling pathwayMyogenesisTOR Serine-Threonine KinasesSkeletal muscleActivin receptorMyostatinActivinsCapillariesMice Inbred C57BLmedicine.anatomical_structureEndocrinologyHippo signalingMultiprotein ComplexesProtein Biosynthesisbiology.proteinIntercellular Signaling Peptides and ProteinsPhosphorylation030217 neurology & neurosurgerySignal TransductionAmerican Journal of Physiology-Endocrinology and Metabolism
researchProduct

2019

Abstract Background Comprehensive transcriptomic analyses have shown that colorectal cancer (CRC) is heterogeneous and have led to the definition of molecular subtypes among which the stem-cell, mesenchymal-like group is associated with poor prognosis. The molecular pathways orchestrating the emergence of this subtype are incompletely understood. In line with the contribution of the cellular prion protein PrPC to stemness, we hypothesize that deregulation of this protein could lead to a stem-cell, mesenchymal-like phenotype in CRC. Methods We assessed the distribution of the PrPC-encoding PRNP mRNA in two large CRC cohorts according to molecular classification and its association with patie…

0301 basic medicineHippo signaling pathwayColorectal canceranimal diseasesMesenchymal stem cellCancerGeneral MedicineBiologymedicine.diseasePhenotypeGeneral Biochemistry Genetics and Molecular Biologynervous system diseases3. Good healthPRNPTranscriptome03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesismental disordersCancer researchmedicineGeneEBioMedicine
researchProduct

STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation

2019

Summary Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerbors…

0301 basic medicinereactivationendocrine systemMitosisNerve Tissue ProteinsProtein Serine-Threonine KinasesBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically ModifiedPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineNeural Stem CellsAnimalsDrosophila ProteinsquiescenceProtein Phosphatase 2lcsh:QH301-705.5Protein kinase BCells CulturedPI3K/AKT/mTOR pathwayTissue homeostasisAdaptor Proteins Signal TransducingCell ProliferationHippo signaling pathwayGene Expression ProfilingHippo signalingInR/PI3K/Akt signalingfungiIntracellular Signaling Peptides and ProteinsBrainSTRIPAK membersProtein phosphatase 2Receptor InsulinNeural stem cellCell biologyDrosophila melanogaster030104 developmental biologylcsh:Biology (General)nervous systemHippo signalingSingle-Cell AnalysisTranscriptomeProto-Oncogene Proteins c-akt030217 neurology & neurosurgeryAdult stem cellCell Reports
researchProduct

Advanced mechanotherapy: Biotensegrity  for governing metastatic tumor cell fate via modulating the extracellular matrix.

2021

Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferatio…

0303 health sciencesHippo signaling pathwayStromal cellChemistryPharmaceutical ScienceCell Differentiation02 engineering and technologyCell fate determination021001 nanoscience & nanotechnologyPhosphoproteinsMechanotransduction CellularCell biologyExtracellular MatrixExtracellular matrix03 medical and health sciencesMechanobiologyTumor progressionNeoplasmsHumansMechanotransduction0210 nano-technologyMechanotherapy030304 developmental biologyAdaptor Proteins Signal TransducingJournal of controlled release : official journal of the Controlled Release Society
researchProduct